

Large NO and HONO emissions from biological soil crusts regulated by dryingwetting cycles and temperature

Dianming Wu¹, Bettina Weber², Ulrich Pöschl²

¹School of Geographic Sciences, East China Normal University ²Multiphase Chemistry Department, Max Planck Institute for Chemistry

18.08.2017 Beijing

土壤生物结皮(Biological Soil Crusts)

(drawing by B. Buedel and F. Spindler)

土壤生物结皮(Biological Soil Crusts)

(from Elbert et al., 2012, Nature Geoscience; Weber et al., 2016)

土壤生物结皮与氮循环 BSCs on nitrogen cycling

HONO与城市大气化学 Urban chemistry of HONO

(from Trick, 2004, PhD thesis)

大气HONO的未知源 Unknown daytime sources of HONO

(Sörgel et al., 2011, Atmospheric Chemistry and Physics)

Sources:

 $NO + OH \rightarrow HONO$

 NO_2 + Humic acid \longrightarrow HONO

 $2NO_2 + H_2O \rightarrow HONO + HNO_3$

 $NO_2^- + H^+ \longrightarrow HONO$

Sinks:

HONO \xrightarrow{hv} OH· + NO HONO + OH· \rightarrow NO₂ + H₂O HONO + NO₂ \rightarrow HNO₃ + NO 華東師紀大學 EAST CHINA NORMAL UNIVERSITY

Introduction

土壤排放HONO HONO emissions from soil

土壤排放HONO的机理探讨 The mechanisms of HONO emission from soil

(from VandenBoer et al., 2015, Nature Geoscience)

(from Donaldson et al., 2014, PNAS)

土壤微生物对HONO排放的贡献 AOB can emit HONO

(from Oswald et al., 2013, Science)

土壤活性氮气体排放 Reactive nitrogen gases emission from soil

(from Oswald et al., 2013, Science)

Methods

动态箱系 统 Dynamic Chamber System

土壤生物结皮HONO和NO排放 HONO and NO released from BSCs

(from Weber et al., 2015, PNAS)

土壤生物结皮HONO和NO排放 HONO and NO released from BSCs

華東師絕大學

MAL UNIVERSITY

(from Weber et al., 2015, PNAS)

土壤生物结皮HONO和NO排放 HONO and NO released from BSCs

HONO and NO emission from Spain BSCs

VERSITY

- There is a non-significant tendency that HONO and NO emission from bare soil are higher than other types of biocrusts,
- Potential reasons:
 - Nutrients concentration in bare soil are higher than that in biocrusts samples
 - Storage time

干湿交替次数对HONO和NO排放通量的影响 Drying-wetting cycles on HONO and NO flux

师能大學

NIVERSITY

T

HONO and NO emission increased during the 2nd cycle of drying-wetting, and kept stable for the next cycles.

干燥温度对HONO和NO排放通量的影响 Pre-experimental drying at different temperatures on HONO and NO flux

- \blacktriangleright HONO and NO emission increased up to 45 °C, and then decreased at 60 °C.
- Potential reasons:
 - High temperature inhibited microbial activity
 - The optimum temperature for the biocrusts is $\sim 45 \text{ }^{\circ}\text{C}$

- Biological soil crusts (biocrusts) are emitters of nitric oxide (NO) and nitrous acid (HONO).
- Based on laboratory, field, and satellite measurement data, we obtain a best estimate of ~ 1.7 Tg per year for the global emission of reactive nitrogen from biocrusts (1.1 Tg a⁻¹ of NO-N and 0.6 Tg a⁻¹ of HONO-N), corresponding to $\sim 20\%$ of global nitrogen oxide emissions from soils under natural vegetation.
- High HONO and NO emission from Spain bare soil may caused by high nitrate concentration from N deposition, from nutrient-rich rocks or microbial community.
- HONO and NO emission increased by the 2nd drying-wetting cycle, but kept stable for the 3rd cycle.
- HONO and NO emission increased with temperature increase up to 45 °C and then decreased at 60 °C, which indicates microbiological processes are still dominant HONO and NO emission even at high soil temperature, and also implies large HONO and NO emission with global temperature increased.

Acknowledgements:

Organizing Committees, IGSNRR of CAS, East China Normal University, Max Planck Institute for Chemistry

Effects of storage temperature and duration on HONO and NO flux

HONO在水溶液中的化学反应

Ostwald process: 3 HONO \implies NO₃⁻ + 2 NO + H₃O⁺

weak Brønsted acid, behaves amphoteric like water HONO + $H_2O \iff H_3O^+ + NO_2^-$ HONO + $H_3O^+ \iff H_2ONO^+ + H_2O \iff 2 H_2O + NO^+$

 $pK_a = -\log(\frac{[H_3O^+] \times [NO_2^-]}{[HONO]})$ pK_a value 3.16 at room temperature

